
Version 1.0

Joaquim Rocha (jrocha@igalia.com)

Copyright © 2012 Igalia, S.L.

Skeltrack is a Free Software library that performs human skeleton tracking 
from depth images.

Introduction

With the release of Microsoft's Kinect, there was finally a camera capable of 
giving depth information at an affordable consumer price. This, together with 
the fact that the device has an open USB connection, opened to doors for many 
innovative projects from independent developers.

One of the common applications of depth cameras, and the primary purpose of 
the Kinect, is the usage of its information to detect people and their 
movements by tracking their skeleton.

Controlling the Kinect's basic features and retrieving its information is already 
successfully accomplished by the Free Software library libfreenect but this 
gives only raw information like the depth, color, orientation of the device, etc. 
so skeleton tracking solutions should then use this information as a base for 
detecting the human skeleton.

The most well-known solutions for skeleton tracking with the Kinect device are 
the Microsoft Kinect SDK, the Microsoft Kinect for Windows and the OpenNI 
framework.
The two Microsoft's solutions differ in the way that the Kinect SDK doesn't allow 
its usage for commercial work whereas the Kinect for Windows does allow it but 
will require its users to purchase a differently branded Kinect. Needless to say, 
Microsoft's solutions, besides being closed, only support the Windows operating 
system.
Even though the OpenNI framework is multi-platform and allows commercial 
use, it's skeleton tracking module is also closed source software.

To solve this problem, Igalia has developed Skeltrack, a truly Free Software 
library capable of tracking the human skeleton from depth images.

Skeltrack's Approach

Skeltrack was not created to be a full-blown SDK for development with the 
Kinect. In fact, Skeltrack does not even require a Kinect device. It is device 
agnostic and just needs to be given a buffer containing the depth information.

Apart from device independence, another goal when developing Skeltrack was 
that it didn't need to use a database of poses with which to compare the ones 



being detect. It should rather use mathematics and heuristics to detect and 
identify the human skeleton's joints.

How it Works

Preparing the buffer

Before the actual algorithm is used, the given depth buffer should be 
preprocessed in order to contain only the user. This can be accomplished by 
thresholding the buffer until it only contains the plane where the user or by 
performing background subtraction.

Skeltrack's algorithm performs computations that might turn out to be heavy 
depending on the machine and the buffer's size used. To make these easier, 
the buffer's dimension should be reduced before supplying it. Skeltrack has a 
property that determines this reduction so it will return the joint's coordinates 
according to the original buffer's size.

Finding the extremas

Skeltrack is partly based on a research paper by Andreas Baak called “A Data-
Driven Approach for Real-Time Full Body Pose Reconstruction from a Depth 
Camera" but, as mentioned, does not use any database, apart from other 
changes to the algorithm.

Skeltrack's algorithm starts by finding the extremas in the depth buffer. That is 
accomplished by creating a graph based on the depth information, that is, each 
graph's node represents a depth point from the buffer and connects to other 
nodes (or points) if their euclidean distance is less than a configurable value.

Due to possible noise from the camera and other factors, the graph might end 
up having more than one component. Since Skeltrack expects to run on a 
connected graph, if the graph has more than one component, these should be 
joined by connecting the closest two nodes between each component.

After having the graph ready, it starts calculating the distances from a starting 
point (node) to every other node using Dijkstra's algorithm. After finding all the 
distances, it takes the node with the longest distance and creates a 0-cost 
edge between this node and the starting point. Then it restarts the algorithm 
using this newly connected node as the starting point.

Skeltrack currently focuses in finding the upper-body extremas so the starting 
point of the procedure explained above is the lowest point vertically aligned 
with a centroid point. This will assure that the upper-body extremas are the 
ones computed. Because it aims for the upper body extremas , the number of 
extremas that are currently computed is 3: hopefully the head and hands but 
not always, as it'll be explained further in this paper.



Identifying the joints

Having had computed the 3 extremas, we will use heuristics to determine if 
one of them should be a head joint. This is accomplished by going over each 
extrema and looking for the two points below them where the shoulders should 
be which is determined by checking the euclidean distance between the two 
points' and the current extrema using some configurable thresholds.

If one of the extremas and respective shoulders' points obey those thresholds, 
they are considered as successfully identified so the algorithm then focuses on 
the other extremas.

For the remaining two extremas, it is simply not enough to consider that the 
one that is on the left is the left hand and the one on the right is the right hand. 
For example, in case the user has extended the arms and crossed them, the 
above assumption would be wrong as the right and left extremas would 
correspond to opposite hands.

To prevent such cases, the way to identify which extrema is right or left used 
by Skeltrack is to make use of the Dijkstra's algorithm again and calculate the 
distance from the two extremas to the shoulder nodes identified before. If an 
extrema is closer to a shoulder's node than the other is, then it belongs to that 
shoulder and is considered left or right according to it. This should work even 
when the user's arms are crossed.

As mentioned before, the 3 extremas should represent the head and hands but 
it doesn't always happen because e.g. if the user has the arms down and close 
to the torso, the hands will not generate a long distance when calculating the 
extremas. However, under such conditions and in other cases, it was observed 
that the extremas would rather match the head and elbows.

To identify whether an extrema is a hand or an elbow, the previously calculated 
distance between it and its shoulder is used. If this distance is greater than a 
configurable threshold, it is considered a hand, otherwise, it is considered an 
elbow.

If an extrema is a hand, the distances previously used can be used again to 
find that arm's elbow. This is done by going over each node in the list of nodes 
used to calculate the mentioned distance and considering the first node with a 
distance less than the one that is defined for the elbows.

At this point, the algorithm finishes and a list holding the detected joints is 
returned.

Future Work

Skeltrack is a very new library so there is surely improvements that need to be 
done. In this section, some of those are mentioned.

As mentioned in the explanation of how Skeltrack works, currently it focuses on 
the upper-body so future work will include the detection of more skeleton joints 
(feet, hips, etc.).

Although the elbows can successfully be identified after the hands are already 
identified, the opposite does not work. That is, if the elbows are identified as 



extremas from the beginning (when the user as the arms down, for example), 
Skeltrack currently cannot infer the hands from them. This will also be part of 
future work.

By working on a buffer with its dimension reduced and due to possible noise 
generated by the camera used, the joints usually jitter so a way to diminish this 
will be implemented. This might be accomplished by using the joints' 
information present at each frame and this information can also be used to 
improve and ease the detection of the joints.

Another improvement that should be done is the detection of more than one 
user. To do this, when connecting the graph's components, it should not 
connect them all but rather only those whose closest points' distance is less 
than a certain value. This will allow to consider the components as independent 
graphs, apply the skeleton detection algorithm to them and also discard 
components that fail to obey certain rules so it can ignore eventual objects that 
might be recorded in the users' area.

Usage

Skeltrack is written with Glib which is part of the GNOME project. It offers a 
synchronous and asynchronous API to track the skeleton's joints so it can be 
used for online or offline skeleton tracking.

The library is shipped with documentation and an example so it should be easy 
to get started with it.

Joaquim Rocha, Igalia, S.L.

Skeltrack is released under the terms of the LGPLv3 license.

Resources

Skeltrack repository: https://github.com/joaquimrocha/Skeltrack

Skeltrack's documentation: http://people.igalia.com/jrocha/skeltrack/doc/latest/

Video of Skeltrack's example application: https://vimeo.com/38875885

Video of using Skeltrack to control the GNOME desktop: 
https://vimeo.com/39660879

Libfreenect: http://openkinect.org/wiki/Main_Page

Kinect for Windows: http://www.microsoft.com/en-us/kinectforwindows/

OpenNI: http://www.openni.org/

https://github.com/joaquimrocha/Skeltrack
http://www.openni.org/
http://www.microsoft.com/en-us/kinectforwindows/
http://openkinect.org/wiki/Main_Page
https://vimeo.com/39660879
https://vimeo.com/38875885
http://people.igalia.com/jrocha/skeltrack/doc/latest/

	Introduction
	Skeltrack's Approach
	How it Works
	Preparing the buffer
	Finding the extremas
	Identifying the joints

	Future Work
	Usage

