
Alex Soto Bueno (asotobu@gmail.com)

Copyright

GNU General Public License.

Ten years ago to present, Enterprise Java Applications have suffered many
changes, JavaScript has been gaining importance on client side because of
HTML5 or JQuery, server side has changed too, so does persistence layer. In
presentation we are going to explore what open source projects use to write
unit, integration and acceptance tests for Enterprise Java Applications and how
to integrate them in your continuous integration system.

Introduction

Ten years ago to present, Enterprise Java Applications have suffered many
changes. We have moved from Enterprise Applications built with JSP+Servlet
and EJB, to much more complex applications. Nowadays with the advent of
HTML5 or JavaScript libraries like JQuery, client side development has changed
significantly. With the emergence of web frameworks like Spring MVC or JSF,
server side code has quite changed compared to the one used when each web-
form was mapped to a Servlet. And also persistence layer has changed with
Java Persistence standard or with new database approaches like Data-Grid,
Key-Values stores or Document stores.

Moreover, architectural changes have occurred too, REST-web applications
have grown in popularity or AJAX is used to create asynchronous web
applications. Due to development of Enterprise Java Applications have changed
during these years, so testing frameworks have changed accordantly.

In this paper we are going to see how to write effective unit tests for these
changes on client side, server side and persistence side. When each module is
tested separately, it is time to write integration tests and resolve container
lifecycle management problem. Finally to validate that our software meets
functional requirements, we will see how to write acceptance tests where front
end is a web.

Unit Testing

Unit testing is a method by which the smallest testable part of an application is
validated.

The main advantages of writing unit tests are:

• Quick feedback about correct behaviour of developed classes.

• Confidence over change. You can change one part of code knowing
that if something goes wrong it will be detected as soon as tests

are executed.

• Tests can be used as documentation to know exactly what a code
does. Javadoc can mislead you, passed tests "not".

To write effective tests, each test must follow the next five rules, which can be
summarised with acronym FIRST.

• (F)ast: unit tests should run fast. If they run fast you will run them more
often, so you will receive feedback about possible problems earlier. To
make your tests faster, there is one gold rule, do not access to I/O
system (network, filesystem, …) and this implies to not hit database in
tests.

• (I)solution: code under test should not have to make calls to external
dependencies, where an external dependency could be a class, a
component, a subsystem, but also must be isolated from itself. Your test
cannot depend on execution of another test. The code's nature is to have
calls to other classes, other components, … so we need to create mocks
and stubs to these components required by code under test.

• (R)epeteable: tests must return the same result under any
circumstances.

• (S)elf-Validating: unit tests are production-code too, so treat it in the
same manner. When someone reads a test must understand quickly
what is the purpose of this test. Moreover tests act as documentation, so
it is important to write them clearly. A good point to start is naming test
classes and test methods with names that describes behaviour they are
going to test, with no implementation details.

• (T)imely: tests should be written before production code. This will make
your code designed to be testable.

In JEE development, each layer requires a different approach to write unit tests.
It seems logical that if client side is mostly written in Javascript and
communication with server side is done using JSON or XML, it would require a
different test framework that the one used in persistence layer.

Client Side

JS TestDriver

There are many frameworks to test Javascript client code like QUnit, Jasmine or
JSUnit, but for me one of the most complete is JS TestDriver
(http://code.google.com/p/js-test-driver/). JS TestDriver is a Javacript test
framework that aims us to write Javascript tests using xUnit approach. But also

offers valuable features like Eclipse integration, running tests through multiple
browsers, code coverage calculation or Maven plugin to generate test reports.

To write Javascript tests with JS TestDriver, first of all you need to write a
Javascript file with test implementation and assertions.

If you are familiar to JUnit there is not much difference apart from being written
in Javascript. Also you can define tearDown and setUp methods as you normally
do in JUnit.

Also you can create optional HTML files known as fixtures. Fixtures are HTTL
code (embedded into test or at external file) which is used during test. They
are really useful when your Javascript code modifies dynamically HTML DOM
structure.

Javascript tests are run directly on browser, so it is likely we need an HTML file
to run tests. With JS TestDriver instead of creating manually an HTML file with
production and test code, it comes with a server which automatically creates
HTML including production and test code. Then you only have to open a
browser and access the server address and configured tests will be run in
opened browser.

Server Side

JUnit

If you are not using a polyglot approach, JEE applications are written in Java.
We can consider JUnit (www.junit.org) as the "de facto" test framework. JUnit is
widely used and clearly does not require many presentations.

But there are some extensions of JUnit that can help in the task of developing
server side tests.

First extension is Parameterized test. Some parts of our code could be tested
using Data-Driven testing (DDT) approach. DDT is based on supplying to tests
input parameters and verifiable outputs from a table, which means that each
row represents one test execution. This approach is really useful in business
code that requires some kind of mathematical calculation or a wide variety of
possible parameter values. A parameterized test is a JUnit extension that lets
us do DDT with minimum of fuss.

To write Parameterized tests in JUnit, unit test should follow some
particularities.

• Runner must be changed to Parameterized class.

• A static method annotated with @Parameters and returning a Collection
of Object array. Each element of the collection represents a row,
meanwhile each element of the array represents the column element of

that row.

• Unit test must contain a constructor with all attributes that forms a row.
For each row, JUnit runner will create a new instance of test calling
parameterized constructor.

• And finally a test which will use class attributes.

Another JUnit extension is Rules. JUnit Rules are classes that modify how tests
are run and reported. JUnit Rules implement TestRule interface and we can do
the same as we do previously with @Before (method is executed before test
method), @After (method is executed after test method), @BeforeClass
(method is executed before test class) and @AfterClass (method is executed
after test class) annotations, but because they are classes, they can be easily
shared between projects and tests. You simply need to annotate TestRule
instance with @Rule, if rule is executed for each method, or @ClassRule if rule
is executed for each test class or test suite.

Last JUnit extension that can help you to organise tests are Categories.
Categories are the way JUnit has to group tests by type. Each type is
implemented as interface, and for each test you need to set in which category
it belongs.

Hamcrest

One of important rules to write effective tests is that they must be self-
validating. With a quick overview everyone should be able to read and
understand what a test does and what is validating. To accomplish this rule, it
is important to correctly name test classes and test methods, but it is also
important to write assertions in a clear way and JUnit assertion method
(assertEquals family) does not help too much.

A further problem is that you cannot concatenate assertions, for example exists
assertEquals method, but not assertNotEquals.

We can enhance assertions using Hamcrest
(http://code.google.com/p/hamcrest/) library. Hamcrest is a library of matchers
for building test expressions in a more natural language.

Mockito

Unit tests must be isolated, no calls to external components. But code has
external dependencies like calls to other classes or system calls. To test
classes with external dependencies we need a mock object. Mock objects are
simulated objects that mimic the behaviour of real objects in controlled way.

In Java exists two major mock frameworks, EasyMock and Mockito. Both of

them have similar features, in fact Mockito starts from a fork of EasyMock, but
what makes Mockito really good is that is thought in terms of expressiveness.
Mockito uses an explicit language for better readability using Fluent Interfaces
and Hamcrest matchers. Moreover Mockito library is simpler than EasyMock, it
needs less code to achive the same behaviour.

Persistence Side

It is rare to think about JEE applications without a persistence layer. Nowadays
most applications have Rational database management systems (SQL) at
backend, but gradually NOSQL database management systems are gaining
terrain. Both systems are conceptually different, meanwhile rational systems
work with tables, NOSQL systems work with heterogenous data structures, like
Document Stores (MongoDB or CouchDB), Graph Databases (Neo4J), Column
Stores (HBase or Cassandra) to cite a few.

When testing persistence layer we must focus on not breaking fast and
isolation rules.

To not break fast rule, it is as simple as using an in-memory database system
(you are not hitting disk or network) so it will run fast. In case of RDBMS, many
in-memory databases exists like HSQLDB, H2 or Derby. But a major problem is
found in NOSQL systems, where there is no homogeneous system. Each vendor
should develop the "in-memory" mode, but this would be the desired scenario,
some engines like MongoDB does not contain an in-memory mode, but Neo4j
do. So this problem should be resolved depending on system chosen. In case
that no in-memory mode exists, I recommend to not write persistence unit
tests, and run them as integration tests.

To not break isolation rule, each test should find the database in a known state
at start, so any database modification done by other tests does not affect
current run. Again with rational engines a JUnit extension called DUnit
(http://www.dbunit.org/) exists which is the responsible of maintaining
database into stable state before each execution. In summary DBUnit cleans
database before each method and inserts data defined in a dataset file.

But again with NOSQL a common solution does not exist to isolate tests YET.
NOSQL Unit (https://github.com/lordofthejars/nosql-unit) is a JUnit extension
which will work as DBUnit works but for NOSQL systems; it is a newly project
and for now it only supports MongoDB, but in next versions Neo4J, CouchDB
and Cassandra will be supported.

Integration Testing

Integration tests are the counterpart of unit tests, they test collaboration

between components, deal with Input/Output system, remote databases and
set special environment configuration.

The problem arises when we write integration tests of JEE 6 applications which
imply an application server. Every time more and more features are being
implemented within a container, to cite some examples CDI (Dependency
Injections with @Inject), JPA (Persistence ORM with @PersistenceContext),
Bean Validation or Servlet Annotations, and writing integration tests of code
that uses these container features plan a new kind of problems.

• code under test must run into a JEE container and this leads us to first
problem, how to manage lifecycle of container like open/close server
operation, deploy application, … from tests.

• how to create the deployment file of code under test.

Arquillian

To solve these problems and other collateral problems, people of JBoss have
developed Arquillian.

Arquillian is a test framework which minimises container lifecycle management
by starting and stopping server when tests are executed. With Arquillian, and
using Shrinkwrap, deployment files can be created programmatically and
deploy it automatically to defined container. Furthermore rather than creating
a deployment file with all project files of your application, you can create a
micro deployment file with only code under test.

Arquillian tests can be run within container or as external client. If your test is
enriched, that is that your test also uses container features, then it should be
run within container, but if integration tests are testing communication
protocol, then it should run against server.

Arquillian follows next steps during its execution:

• First Arquillian starts configured container (Tomcat, JBoss, Glassfish, …)

• Second step is creating deploy file and upload to server.

• Then tests are executed.

• And finally test results are sent back to runner, and server is stopped.

Acceptance Testing

Acceptance Tests are created by stakeholders and are expressed using
business domain language. These are high-level tests to test that business
logic and UI are implemented meeting requirements accorded by business
customers, business analysts, testers and developers.

To write acceptance tests correctly the first thing to do is write user stories. A
user story is one or more sentences in everyday language that describes from
the point of view of end user, an action which gives business value. User
stories typically follow next template:

As a <role>, I want <goal> so that <benefit>. For example:

"As administrator, I want to add new books to a collection, so users can borrow
them."

After a user story is specified, acceptance criteria is written. Acceptance
criteria defines a set of conditions to consider user story as complete. Typically
acceptance criteria follows next template:

Given [Precondition], When [Actor + Action], Then [Observable Result]. For
example:

"Given a new book needs to be added to library, when administrator adds it,
then book is visible to all use.".

"Given a user into system, when new book is added, then book is available to
be borrowed.".

But also a more natural language can be used, for example:

"Administrator can categorise books."

Apart form acceptance criteria, examples to write tests must be provided too.
These examples cannot be technical or impersonal sentences, but should
describe exactly which data and under what scenario test is valid in a step-by-
step form. These examples will be used by test writers to develop acceptance
tests. As an example of specification by example:

Scenario: Administrator wants to add a new book.

1. Create Lord Of The Rings Book.

2. Assign J.R.R Tolkien as author.

3. Set Book Description.

4. Add Book to System.

5. Check that Book is shown on screen.

Almost all JEE applications are using a web as graphical user interface, so
obviously the acceptance test framework should be able to access web page
elements. Moreover because there are many different browsers (Firefox,
Chrome, Opera, IExplorer, …) in market, it should be easy to run acceptance
tests against any browser. And finally because acceptance tests are organised
by user stories and specifications, chosen framework should be able to
organise tests and stories.

Thucydides

Acceptance test framework that meets all these requirements is Thucydides
(http://www.wakaleo.com/thucydides/). Thucydides is a tool designed to make
writing automated acceptance and regression tests easier.

Thucydides is a Selenium 2 Extension, so it uses WebDriver API to access HTML
page elements. But also helps you to organise your tests and user stories by
using a concrete programming model, create reports of executed tests, and
finally it also measure functional cover.

To write acceptance tests with Thucydides next steps should be followed.

• First of all choose a user story.

• Then implement the PageObject class. PageObject is a pattern which
models web application's user interface elements as objects, so tests can
interact with them programmatically.

• Next step is implementing a steps library. This class will contain all steps
that are required to execute an action. For example creating a new book,
requires to open addnewbook page, insert new data, and click to submit
button.

• And finally implement chosen user story by following Acceptance Criteria.

Continuous Integration

In this paper we have talked about three kind of tests, unit tests, integration
tests and acceptance tests, but also other kind of tests exists like smoke tests,
performance tests, regression tests, user acceptance tests… but only unit tests
should be run directly by developers, the other ones should be executed by
continuous integration system because it is the responsible of giving feedback
loop about the state of the code.

Jenkins/Hudson

The widely adopted open source continuous integration system in Java is
Jenkins/Hudson. Jenkins (and Hudson) provides continuous integration services
for software development, and although is not mandatory to use Maven,
Jenkins integrates seamlessly with Maven.

Build jobs are at the core of the Jenkins build process. Build jobs are particular
tasks that should be executed application build and can involve compiling
source code, running unit tests or measuring code coverage. Typically a project
will contain more than one build task chained, for example one for compiling
and running unit tests, if build is successfully run, launch another one for
running integration tests, or deploying application to a web server.

To manage deployment pipeline, Build Pipeline Plugin is a Jenkins plugin which
gives you the ability to form a chain of jobs and view the state of each job for
each execution.

Conclusions

Sadly, software culture has tended treat tests as a residual portion of code that
can be avoided if no time. This is something hard to change, but gradually
more and more developers are seeing for themselves that writing tests (any
kind of them) correctly reduce the time it would be spend out in the future to
fix an error found in production stage.

Tests are not more important than business code, it should be treated as an
equal, same coding rules, same code reviews, and same resources.

Moreover if you are planning to adopt Continuous Delivery principles, the only
way to guarantee the correctness of software is writing tests.

Finally it is important to note that 80% of your test code should be written in
unit tests, because they are responsible to test border conditions, unusual
cases or exceptions that should not happen. Integration tests should not be
more than 15%, and only 5% of lines of tests should be involved in Acceptance
tests.

Alex Soto, www.lordofthejars.com

	Introduction
	Unit Testing
	Client Side
	JS TestDriver

	Server Side
	JUnit
	Hamcrest
	Mockito

	Persistence Side

	Integration Testing
	Arquillian

	Acceptance Testing
	Thucydides

	Continuous Integration
	Jenkins/Hudson

	Conclusions

